



Overview - almost ready for launch
ECMWF preparations 2002-2004

- Example for other NWP centres
- Level-2B processor development
  - ECMWF is lead institute, 5 sub-contractors
  - 2004-present

Other ongoing work/operational phase

- ♦ GSOV, Cal/Val, In-orbit commissioning
- ECMWF to generate operational L2B/L2C products, monitor & assimilate Aeolus data, assess impact on NWP
- Maintain, develop & distribute L2B processor

→ On behalf of ESA, using NWP-SAF approach



14-18 Apr 08 ADM-Aeolus Wind Retrievals for NWP – 9<sup>th</sup> IWW Annapolis



# L2B data simulated using ECMWF clouds ...

- 90% of Rayleigh data have accuracy better than 2 m/s
- In priority areas (filling data gaps in tropics & over oceans)
- Complemented by good Mie data from cloud-tops/cirrus (5 to 10%)
- Tan & Andersson
   QJRMS 2005



LIPAS-simulated HLOS data - operational processors later

Slide 4

14-18 Apr 08 ADM-Aeolus Wind Retrievals for NWP – 9<sup>th</sup> IWW Annapolis







MWF

# Global information content - consistent

- Mike Fisher for Entropy Reduction & DFS
  - S ~ log( det( P<sup>A</sup> ) )
    - ~ tr ( log (  $J''^{-1}$  ) )
  - J" = 4d-var Hessian
  - P<sup>A</sup> = analysis error covar.
- DWL data are accurate and fill data gaps
  - subject to usual caveats about simulated data

|                    | TEMP/PILOT    | Simulated DWL |
|--------------------|---------------|---------------|
| Data considered    | u,v to 55 hPa | HLOS          |
| Entropy_Reduction  | 4830          | 3123          |
| ("Info bits")      |               |               |
| Deg_Free_Sig       | 3707          | 2743          |
| N_Obs              | 90688         | 50278         |
| Info bits per obs  | 0.053         | 0.062         |
| N_Obs/Deg_Free_Sig | 24.5          | 18.3          |
| Redundancy         |               | 2 — 3 %       |





#### Assimilation of prototype ADM-Aeolus data 2003/4: introduced L2B hlos as new observed quantity in 4d-Var



Prototype Level-2B (LIPAS simulation, includes
 representativeness error)

**Observation Processing** 

Data Flow at ECMWF

Slide 7



**Observation Screening** 

Assimilation Algorithm

Diagnostic post-processing

IFS "4D-VAR" Implement HLOS in FWD, TL & ADJ Codes Variational Quality Control

Check completeness of report, blacklisting

**Background Quality Control** 

Analysis

"Obstat" etc (Lars Isaksen) Recognize HLOS for statistics Rms, bias, histograms

14-18 Apr 08 ADM-Aeolus Wind Retrievals for NWP – 9th IWW Annapolis



#### Assimilation of prototype ADM-Aeolus data 2004-: Receive L1B data & L2B processing at NWP centres



Non-IFS processing

L2BP (1 50-km observation)

**Observation Screening** 

Assimilation Algorithm

**Diagnostic post-processing** 

Level-1B data (67 1-km measurements) Observation Processing

Data Flow at ECMWF

Slide 8

"Bufr2ODB" Convert BUFR to ODB format Recognize HLOS as new known observable

IFS "Screening Job" Check completeness of report, blacklisting Background Quality Control

IFS "4D-VAR" Implement HLOS in FWD, TL & ADJ Codes Variational Quality Control

> "Obstat" etc (Lars Isaksen) Recognize HLOS for statistics Rms, bias, histograms

14-18 Apr 08 ADM-Aeolus Wind Retrievals for NWP – 9<sup>th</sup> IWW Annapolis



Analysis

Level-2B processor will run in different environments ECMWF will supply source code - use as standalone or callable subroutine <u>Aeolus Ground Segment & Data Flows - schematic view</u>



## Retrievals account for receiver properties ...



Tan et al Tellus A
2008

- Dabas et al same
   issue
- Mie light reflected
   into Rayleigh channel

 Rayleigh wind algorithm includes correction term involving scattering ratio (s)

Slide 10

ADM-Aeolus Optical Receiver - Astrium Satellites

14-18 Apr 08 ADM-Aeolus Wind Retrievals for NWP – 9<sup>th</sup> IWW Annapolis



# ... and for atmospheric scattering properties

ILIAD – Impact of P & T and backscatter ratio on Rayleigh Responses - Dabas Meteo-France, Flamant IPSL



14-18 Apr 08 ADM-Aeolus Wind Retrievals for NWP – 9<sup>th</sup> IWW Annapolis

#### Retrievals validated for idealized broken multi-layer clouds - E2S simulator + operational processing chain



# Realistic scenes simulated.

- Real scattering measurements obtained from the LITE mission
   ESA's software (E2S) is used to simulate what ADM-Aeolus would 'see'
  - The L1B software retrieves scattering ratio at the 1 km measurement resolution

Our input not perfect



# Wind retrieval validated in the presence of heterogeneous clouds and wind - E2S simulation



**Retrieved Rayleigh winds are accurate – being refined** 



systematic error in L1B input

Slide 14

14-18 Apr 08 ADM-Aeolus Wind Retrievals for NWP – 9<sup>th</sup> IWW Annapolis



## Summary - Day-1 system on track

- 1. Level-2B hlos winds primary product for assimilation
  - a. Account for more effects than L1B products
  - b. Will be generated in several environments
  - c. Motivated strategy to distribute source code
- 2. Main algorithm components developed & validated
  - a. Release 1.33 available development/beta-testing
  - **b.** Documentation and Installation Tests
  - c. Portable tested on several Linux platforms
- 3. Ongoing scientific and technical development
  - a. Sensitivity to inputs, QC/screening, weighting options
- 4. Contact points ESA and/or ECMWF

14-18 Apr 08 ADM-Aeolus Wind Retrievals for NWP – 9<sup>th</sup> IWW Annapolis



#### Level-2B hlos error estimates - reqts met





## Overview - why expectations are so high

- ADM-Aeolus addresses key observational needs
  - Objectives, wind observation requirements, DWL instrument, viewing geometry
- Implementation well-advanced for launch in 2009
  - Space and ground segments
  - HLOS wind product (L2B data, algorithm, portable s-ware)
  - Cloud and aerosol products (L2A data)
  - Experimental campaigns and calibration/validation
- Studies with wind lidar data support theoretical expectations
  - Data simulations, NWP data impact studies (assimilation ensembles as alternative to OSSEs, + information content)

◆ Airborne DWL (Weissman). Tropical assimilation (Zagar).
 14-18 Apr 08 ADM-Aeolus Wind Retrievals for NWP – 9<sup>th</sup> IWW Annapolis
 Slide 17

## Key references

- Baker et al 1995, BAMS
- ESA 1999 Report for Assessment (Stoffelen et al 2005, BAMS) and 2007/8 Science Report
- Weissman and Cardinali 2006, QJRMS
- N. Zagar & co-authors, QJRMS & Tellus A
- Tan & Andersson 2005, QJRMS
- Tan et al 2007, QJRMS
- Tan et al 2008, Tellus A (Special Issue on ADM-Aeolus)



#### Background for ADM-Aeolus Measurement Concept



CALIPSO lidar - vertical cross sections of backscatter



- Backscatter signal
- Aeolus winds are derived from Doppler shift of aerosols and molecules along lidar line-of-sight
- Error estimates, cloud & aerosol properties derived from signal strength



#### Background for ADM-Aeolus Measurement Concept



- Backscatter signal
- Winds are derived from Doppler shift of aerosols and molecules along lidar line-of-sight
- Error estimates, cloud & aerosol properties derived from signal strength

Slide 20

14-18 Apr 08 ADM-Aeolus Wind Retrievals for NWP – 9<sup>th</sup> IWW Annapolis



#### ADM-Aeolus Space Segment - preparation/testing of 1) structural-thermal model 2) lidar transmitter/receiver











Slide 21

14-18 Apr 08 ADM-Aeolus Wind Retrievals for NWP – 9<sup>th</sup> IWW Annapolis



## 5.1 Prototype Level-2C Processing

- ✓ Ingestion of L1B.bufr into ✓ Assimilation of HLOS the assimilation system
  - ♦ L1B obs locations within **ODB** (internal **Observation** DataBase)
- observations (L1B/L2B)
  - Corresponding analysis increments (Z100)



ADM-Aeolus Wind Retrievals for NWP – 9th IWW Annapolis 14-18 Apr 08

Slide 22

MWF

- 5.2 Key assimilation operators
- Tan 2008 ECMWF Seminar Proceedings
- HLOS, TL and AD
  - $\bullet H = u \sin \varphi v \cos \varphi$
  - dH =  $du \sin \varphi dv \cos \varphi$
  - dH\* =  $(-dy \sin \varphi, -dy \cos \varphi)^T$
  - Generalize to layer averages later
- Background error
  - Same as for u and v (assuming isotropy)
- Persistence and/or representativeness error
- Prototype quality control
  - Adapt local practice for u and v



# 2a-4. Other NWP configurations



## 1a/b. What are Level-2B/2C Products?



# 1a/b. What are Level-2B/2C Products?

> 2B: Meteorologically representative HLOS profiles

- retrieval algs applied to Level-1B data, 2B-output suitable as input to data assimilation
  - auxiliary input data: T & p, Rayleigh-Brillouin response data, etc

> 2C: Meteorologically representative wind vector profiles

- result of a data assimilation algorithm, combining
   Level-2B with other data/weather forecast model
- > How do they differ from Level-1B Products?
  - Rayleigh channel retrieval accounts for T & p effects
  - measurements grouped/weighted by features detected in the atmospheric scene (primarily clouds & aerosol)



# 2a. Who will make Level-2B/2C Products?

- > ECMWF for "operational" Level-2B/2C products
  - Processing integrated with data assimilation system
  - Products in ESA's Earth Explorer file format available from ESA (Long-Term Archive)
- > ESA LTA for Level-2B late- & re-processing
  - Level-1B missing ECMWF's operational schedule
  - New processing parameters/auxiliary inputs
- > Other Numerical Weather Prediction centres
  - Different operational schedule/assimilation strategy
  - Different processing params/aux inputs/algorithms
- > Research institutes & general scientific users
  - Different processing params/aux inputs/algorithms



# 2a-1. ECMWF "operational" configuration



#### 2a-2. ESA-LTA late- and re-processing



## 2a-3. Research/general scientific use



# 2b. Why distribute L2BP Source Code?

- > Distribution of executable binaries only permits
  - limited number of computing platforms
  - different settings in processing parameters input file
    - thresholds for QC, cloud detection
  - different auxiliary inputs
    - option to use own meteorological data (T & p) in place of ECMWF aux met data (available from LTA)
- Provide maximum flexibility for other centres/institutes to generate their own products
  - different operational schedule/assimilation strategy
  - scope to improve algorithms

- feed into new releases of the operational processor

## 3a. How it works - Tan et al *Tellus A* 2008

- > Rayleigh channel HLOS retrieval Dabas et al, Tellus A
  - -R = (A-B) / (A+B) and HLOS =  $F^{-1}(R;T,p,s)$
  - T and p are auxiliary inputs
  - correction for Mie contamination, using estimate of scattering ratio s
- > Mie channel HLOS retrieval
  - peak-finding algorithm (4-parameter fit as per L1B)
- > Retrieval inputs are scene-weighted
  - ACCD =  $\Sigma$  ACCD<sub>m</sub> W<sub>m</sub>, W<sub>m</sub> between 0 and 1
- > Error estimate provided for every Rayleigh & Mie hlos
  - dominant contributions are SNR in each channel



# 4. Distribution of L2BP software

- > Software releases issued by ECMWF/ESA
  - Details & timings to be determined
  - Probably via registration with ECMWF and/or ESA
  - Source code and scripts for installation
    - Fortran90, some C support
    - Developed/tested under several compilers
  - Suite of unit tests with expected test output
  - Documentation
    - Software Release Note
    - Software Users' Manual
    - Definitions of file formats (IODD), ATBD, etc.



# Conclusions

- > Expectations for ADM-Aeolus are high
  - On track for producing major benefits in NWP
    - Meeting the mission requirements for vertical resolution & accuracy
    - Extending to stratosphere, re-analysis
    - Our software available to NWP/science community
  - Combine with other observations
    - Height assignment for AMVs
    - Complement other cloud/aerosol missions
  - Related research
    - Background error specification



#### 5.3 L2BP integration within an assimilation system



#### 5.4 Overview data flow - standalone mode



14-18 Apr 08 ADM-Aeolus Wind Retrievals for NWP – 9<sup>th</sup> IWW Annapolis



## 5.5 Principal Guidance to Met Centres

- 1. How to install and test the standalone version
  - Source code, documentation, unix scripts and test data (EE format) supplied
  - Useful tool for inter-comparison purposes
- 2. Interface requirements for integrated-assimilation mode
  - Generation of auxiliary meteorological data
  - Wrapper module between "odb" and L2B processor used as a callable subroutine within assimilation.x
  - Both to occur during Screening
  - Facilitates assimilation of Aeolus data
  - Assimilation outputs at discretion of each met centre

